Příloha č. 5 ZD - Annex 5 of the Tender Documentation (courtesy translation – for information only)

Benchmark Tests

Introduction
This Annex of the Tender Documentation describes the set of benchmark tests. The software ALADIN in the prescribed configuration will be used to verify the tendered high performance computing server's ability to meet the mandatory performance requirements as specified in SPEC_12, SPEC_16, SPEC_30, SPEC_39 and SPEC_40 in Annex 3 of the Tender Documentation.

All of the output from the tests, including stdout, stderr and any job logs, must be provided to CHMI in electronic form as either individual files or grouped as a tar file on DVD. Binary outputs (In Core Memory Spectral History files ICMSH*, Large Scale Coupling Files ELSCF*, etc.) are not required to be returned.
The output must include:
· A title giving the test name;
· Timestamps enabling the starting and ending wall-clock time to be determined for the job execution;
· The amount of CPU time used for these sections;
· The actual job run, including any source and input data files such as fort.4, to enable CHMI to identify any changes made to the source and/or input data;
· The outputs of the test.

All tests must be run using binary executable code made from the same set of libraries.

The same binary executable code must be used in all tests (specific recompilations to run any of the tests is NOT allowed). The executable code used for tests must be generated using compilers and libraries that are provided and supported in response to the Tender requirements.

Each test must be run twice (unless stated otherwise) and yield reproducible, bit identical results.

For each test the total wall clock time is taken to be the difference in the times at which the first job of the test starts and the last job of the test terminates. For clarity, these starting and ending points are timed in the shell scripts by calls to the “date” utility with labels “start of test XX” and “end of test XX”. Input files before the start of the test and output files before the end of the test must reside on the shared disk file system (SDFS).

The code modifications must not change numerical results in a meteorologically significant way. The spectral diagnostics computed by ALADIN will be compared to a standard set of diagnostics of the reference, generated on a platform having IEEE floating point arithmetic, using the supplied version of the ALADIN code as a part of the Tender Documentation.

The Tenderer shall give the overview of the benchmark results using the template shown in Table 1, as a part of the benchmark report.

Software installation

The source code and data necessary for the benchmark tests are available for download in the ftp box of CHMI. The list of files is shown on Figure 1.

[bookmark: _Ref384790032][bookmark: _Ref385153690]ICMSHALADINIT
ELSCFALADALBC000
ELSCFALADALBC001
ELSCFALADALBC002
ELSCFALADALBC003
ELSCFALADALBC004
ELSCFALADALBC005
ELSCFALADALBC006
ELSCFALADALBC007
ELSCFALADALBC008
Sourcesetc.tar:
	src/aladin43.tar
	srcadd/auxlibs_installer.2.3.tar
	srcadd/grib_api-1.10.4.tar.gz
	srcadd/lapack-3.6.1.tgz
	script/morgane
	script/fullpos
	namelist/fullpos.namel
	namelist/morgane.namel
	listing/morgane.refer.out
	listing/fullpos.refer.out

[bookmark: _Ref14004390]Figure 1. The list of files for benchmark tests.
[bookmark: _Toc14004454]
Building ALADIN
This part contains detailed information on the preparation of benchmark tests with the ALADIN model. The source code is based on the Cycle 43 of the ARPEGE/ALADIN libraries.
The ALADIN software is structured in directories in function of the parts of the whole numerical system. In addition, libraries grib_api, gribex and algebraic computation libraries LAPACK/BLAS are also necessary to build an executable code.
Source codes of the model and additional libraries are provided as tar files in directories src/ and srcadd/.
Compilation
Libraries consist of subroutines, functions and modules (*.F90) written in free format in Fortran 90 and of include files (*.h) containing namelists, interfaces and other shared items. They are in a highly portable form and so there should not be any need to modify the source code except for the inline compiler directives.

Arp – code of the global model ARPEGE;
Ald – code ALADIN, which is a limited area version of ARPEGE;
Tf – code of spectral transforms in ARPEGE;
Ta – code of spectral transforms in ALADIN;
Sur – code of surface scheme;
Sat – code of satellite assimilation tools;
Bip – code of the bi-periodization algorithm;
Cou – code of the coupling;
Ecf, Odb, Mse, Mpa and Bla are needed due to „include“ files and modules necessary for the compilation. Xla library contains some linear algebra tools and some other mathematical functions.

Xrd library contains low-level and technical Fortran and C functions and subroutines. Some of them are system dependent and could and should be modified by each Tenderer. Some subroutines are in Fortran 90 free format (*.F90), some are in fixed Fortran format (*.F). But they should be normally compiled by the same Fortran 2003 compiler.

For the compilation a care on dependencies should be taken, since FORTRAN routines may use modules from other sub-libraries than where they are located. There are also modules inside modules.

To build the executable Binary, i tis first necessary to install the following support libraries, which are provided in directory srcadd/:
- grib_api version 1.10.4;
- LAPACK/BLAS mathematical libraries;
- gribex (file auxlibs_installer.2.3.tgz).
These libraries are installed separately.
Definition of „kind“
ALADIN is written in the way that it allows explicit definition of the variables kinds. The numerical solution requires high precision of floating-point operations which must be performed mostly in the double precision. In the model subroutines variables are declared as tiny (KIND=JPRT) for REAL, (KIND=JPIT) for INTEGER, small (KIND=JPRS), (KIND=JPIS), medium (KIND=JPRM), (KIND=JPIM), big (KIND=JPRB), (KIND=JPIB) or huge (KIND=JPRH), (KIND=JPIH). See the files Xrd/module/parkind1.F90 and Xrd/module/parkind2.F90, where actual kinds of these types are defined.

However, due to the heterogeneity of some libraries content (for example Xrd, Xla, Mpa, Mse, etc.), this system is not fully implemented there.
Therefore, it is necessary to compile the concerned Fortran items with the automatic promotion of real variables to 8 bytes (REAL(KIND=8) or REAL*8) while keeping integers in the declared way. The other libraries should be compiled without any promotion.
Linking
Having created all libraries they can be linked together by ld. The linking script is not provided. It is important that the libraries are linked in the right order of sub-libraries:
1. Ald
2. Arp
3. Sat
4. Sur
5. Ta
6. Tf
7. Bip
8. Cou
9. Mpa
10. Mse
11. Xla
12. Xrd
13. Lapack/Blas (liblapack.a,librefblas.a)
14. Grib_api (libgrib_api_f90.a, libgrib_api.a)
15. Gribex (libgribex_370R64.a)

Items in the higher-level libraries must globally override items in lower-level libraries. During the loading the item master.o should be used as a main entry to the executable program.
In order to simplify the porting of the ALADIN benchmark code some model libraries are not included in the benchmark package. Those are subroutines which would not have been called anyway by the model configuration requested here. However, since these external references would be missing for linker, the Tenderer replaces them by C functions containing dummy calls to the unsatisfied references, including a print of the message ‘function <name> should not be called’.
[bookmark: _Toc14004455]
Running ALADIN
Having built the model executable ALADIN.exe one can start running various tasks and configurations of the model. Script examples are provided in the directory script/after extracting the content of the file „sourcesetc.tar“.
What ALADIN.exe will actually do is defined by parameters set in the namelist file. This namelist file must exist in the directory where the model executable is called from and it must have the name “fort.4”. The directory namelist/ contains namelist files for the configuration MORGANE and for the configuration FULLPOS.
Input data for the MORGANE task consist of the initial condition of the integration job ICMSHALADINIT and of the lateral boundary conditions (files ELSCF*).
The ALADIN code enables MPI and/or OpenMP parallelization. Options for MPI parallelization are placed in the namelist blocs NAMPAR0 and NAMPAR1, see below.
The directory listing/ contains the reference output files.

Tests description

The set of runs ASIS
The source code cannot be modified except the changes described below. If the Tenderer wishes to make any other changes then the consent of CHMI must be obtained, otherwise the bid would not be considered. Following categories of code changes are permitted:

a) The FORTRAN source may be passed through one or more generally available pre-processors, the final output of which should then be used as input to a FORTRAN compiler.
b) Compiler directives may be inserted in the code in order to direct the compiler to perform some functions which it would not otherwise do e.g. "ignore vector dependencies", "unroll a DO-loop", "align arrays on different cache lines".
c) It is permitted for the compiler or pre-processor to "inline" routines, by compiler directives or automatically.
d) It is permitted to insert or modify OpenMP directives.
e) It is permitted to optimize subroutines in the directory src/Xrd/support/ or even replace their calls by calls to the vendor supplied libraries, in which case these libraries would become part of the supported software.
f) It is permitted to optimize the LAPACK/BLAS library or replace it by the vendor supplied libraries, which would become part of the supported software.

All changes must be documented and easily identifiable within the source code e.g. by "commenting out" the original code by placing a string such as "!#xxx#" where “xxx” is a string of characters easily identifying the vendor (“atos”, “ibm”, “nec”, “sgi”, “cray”, etc.).
The following namelist parameters in file “fort.4” may be modified:
	
In the namelist NAMDIM:
NPROMA: block-length factor of the grid-point calculation loops. Its value should be set as negative, otherwise it would be over-written by the default.
		
In the namelist NAMPAR0:
NPROC: total number of MPI tasks to be used for the run.
NPRGPNS, NPRGPEW, NPRTRW, NPRTRV: parameters setting MPI tasks distribution.
LOPT_SCALAR: optimization for scalar-architecture computers.

In the namelist NAMPAR1:
NSTRIN, NSTROUT: total number of MPI tasks used for input and output processing.
	
Comparing the Spectral Norms
In order to verify whether the results of tests obtained on the benchmarked high performance computing server are correct, it is necessary to compare the spectral norms with respect to the spectral norms of the reference outputs. Due to high sensitivity of spectral norms to differences in the floating-point operations precision it is in practice usually impossible to reproduce the norms exactly on different systems.
The norms calculated for several meteorological parameters can be found in the output listings (NODE.001_01). They are calculated every fifth time step and look like shown on Figure 2.

The corresponding reference output of the configuration MORGANE is in the directory listing/., file “morgane.refer.out“.

The Tenderer shall compare spectral norms with respect to the reference for integration steps from 0 to 40 with the interval of 5 steps (Test MORGANE) for the 3 following variables: “VORTICITY”, “DIVERGENCE” and “d4 = VERT DIV + X”. Results are correct when departures for “VORTICITY” and “DIVERGENCE” from the reference results do not exceed one per mille (1 ‰) and when departures of the variable “d4 = VERT DIV + X” from the reference results do not exceed two per mille (2 ‰) within the verified interval of the first 40 time-steps of the model integration.

NORMS AT NSTEP CNT4 (PREDICTOR) 5
 SPECTRAL NORMS - LOG(PREHYDS) 0.114979521644852E+02
 LEV VORTICITY DIVERGENCE TEMPERATURE HUMIDITY KINETIC ENERGY
 AVE 0.459375177193074E-04 0.539773251492018E-04 0.263014820068540E+03 0.385130815676301E-02 0.778323684407708E+02
 LEV LOG(PRE/PREHYD) d4 = VERT DIV + X
 AVE 0.680041507485121E-05 0.368197585528870E-04
Figure 2. Example of the spectral norms print in the MORGANE listing

Absolute Binary Creation Test
The main purpose of this test is to show the ability to pre-process, compile and build the absolute binaries of the ALADIN model. As such, all the necessary steps, e.g. pre-processing, compilation, link-loading etc., which are required to produce an absolute from the source files, supplied as the ALADIN part of the Tender Documentation, must be performed.
The Tenderer provides to CHMI in an electronic form the source code used for the creation of the absolute Binary, including the documented modifications (see above) together with the compilation output (compilation listings and compiler messages). This code version would be used for the acceptation tests.
The Tenderer shall describe compilation and load switches used (requirement SPEC_38) as well as the list of libraries used to load the absolute binary.

Test Morgane
The test MORGANE performs ALADIN integration to 24 hours. The script (provided example script/morgane) uses input data ICMSHALADINIT (initial condition of the task) and ELSCFALADALBC0$NUM (NUM=00, 01, 02, …, 08; lateral boundary conditions of the task) and the file namelist namelist/morgane.namel.
At output 25 files ICMSHALAD+00$hh are produced containing the current state every hour of the forecast.
Run a single copy of MORGANE, denoted as copy0, on the System Phase A.
Run a single copy of MORGANE, denoted as copy0, on the System Phase B.
Run concurrently 4 copies of MORGANE on the System Phase A.
Run concurrently 8 copies of MORGANE on the System Phase B.
All copies of MORGANE run in this test must have identical spectral norms.
Compare spectral norms with respect to the reference output to verify whether results are correct, see the section “Comparing the Spectral Norms”.
Resulting wall-clock times will be considered as a measure of the System performance in judging the compliance to the mandatory requirement SPEC_12.
Output listings should be stored in listing/morgane.perf.number_of_the_copy.phaseA(B).
Run short term 1h MORGANE forecasts (set CUSTOP=‘h1‘ in the namelist) for three different values of the NPROMA blocking length. Output listings should be stored in listing/morgane1h.NPROMA_$. The results will be used to verify requirement SPEC_39. This part of the MORGANE test does not need to be run twice.
Run short term 1h MORGANE forecasts (set CUSTOP=‘h1‘ in the namelist) for three different numbers of processors. Output listings should be stored in listing/morgane1h.nproc_$. The results will be used to verify requirement SPEC_40. This part of the MORGANE test does not need to be run twice.

Test Fullpos
The FULLPOS test performs the post-processing of the ALADIN model output at the forecast range of three hours and is used to verify the results. The script (example script/fullpos) uses on the input the result file ICMSHALAD+0003 (three hour forecast) of the MORGANE test as the initial condition ICMSHALADINIT of the post-processing task. Another needed input is the namelist file namelist/fullpos.namel.
At output the file PFALADMODL+0000 is created, containing post-processing results.
Run a single copy of MORGANE (24h forecast) on half of the computing nodes of the System Phase A. When the file ICMSHALAD+0003gets produced, start the FULLPOS test concurrently with the MORGANE test, which continues normally.
Compare resulting (AVERAGE) norms “FULL-POS GPNORMS” with respect to the reference output (listing/fullpos.refer.out) at the model level number 87, see Figure 3:

S087WIND_U_COMPO/MODL : 0.777301966722753E+00
S087WIND_V_COMPO/MODL : -.191577109407441E+00
S087TEMPERATURE /MODL : 0.292956482845314E+03
S087GEOPOTENTIEL/MODL : 0.254752041773500E+04
S087WIND_VELOCIT/MODL : 0.205483016930642E+01
S087HUMI_RELATIV/MODL : 0.747095816695614E+00
S087THETA_P_W /MODL : 0.290483651133016E+03
S087VIRT_P_TEMPE/MODL : 0.321067237231376E+03
S087PRESSURE /MODL : 0.984274349064094E+05
Figure 3. Norms „FULL-POS GPNORMS at the level number 87 of the FULLPOS output listing
Results are correct when relative departures of norms do not exceed value of 4e-03for wind parameters (WIND_U_COMPO, WIND_V_COMPO and WIND_VELOCIT), value of 2e-06 for temperature parameters (TEMPERATURE, THETA_P_W and VIRT_P_TEMPE), value of 5e-05 for relative humidity parameter (HUMI_RELATIV) and value of 1e-06 for mass field parameters (GEOPOTENTIEL and PRESSURE).

Repeat this test accordingly for the System Phase B. Output listings should be stored in listing/fullpos_output.phaseA(B). This test does not need to be run twice.

Memory verification test
The system of the phase B must have enough memory to execute concurrently at least 20 copies of the deterministic forecast MORGANE test. The wall-clock time taken to execute memory verification test should be less or equal to 20/8 times the one of the 8 concurrent MORGANE performance test
Run concurrently 20 copies of the MORGANE test on the System Phase B.
The Memory verification tests do not need to be run twice. However, all MORGANE copies run under these tests must have identical spectral norms to the single MORGANE Performance tests.
Output listings should be stores in listing/morgane.memory.number_of_the_copy.phaseB.
Results will be considered as a measure of the System performance in judging the compliance to the mandatory requirement SPEC_16.

Operational SWITCHOVER test
This involves starting a single ALADIN forecast (MORGANE job) with a normal priority, using all the HPCS processor cores on all the Computing nodes of the System, then once the model reaches 12 hours of forecast (“model time”) a second ALADIN forecast model must be started also using all the System processor cores and it has to run at the highest priority, to utilise also all the HPCS processor cores on all the Computing nodes of the System.
This is simulating a high priority operational job being run at the expense of a normal priority job. After the high-priority job finishes the former normal priority job will regain the computer resources and will continue and complete. The total wall-clock time of the 2 runs run in parallel should not exceed the sum of each individual standalone run. The wall-clock time of the high priority job must not exceed by 5% the wall-clock time of a single copy of the performance MORGANE test.
The Tenderer must state how this was achieved, whether the normal priority job had to be suspended, swapped out or check-pointed, or whether it was sufficient just to use the priority mechanism alone. Aborting the normal priority job and rerunning it after the high-priority one in order to fulfil the Switchover Test is not acceptable for CHMI.
Results will be considered as a measure of the System performance in judging the compliance to the mandatory requirement SPEC_30.

Results
Table 1. Template Form to report on the Results
	TEST PHASE A

	Test
	Title
	Number of copies run concurrently
	Elapsed (wall-clock) time to complete specified number of copies
	Number of processor cores and MPI tasks in 1 copy: NCORES/NPROC
	Maximum memory per node
	Total Memory

	1
	MORGANE
	1
	
	
	
	

	1R
	Repeat
	1
	
	
	
	

	2
	MORGANE
	4
	
	
	
	

	2R
	Repeat
	4
	
	
	
	

	3
	SWITCHOVER
	High priority
	
	
	
	

	
	
	Normal priority
	
	
	
	

	
	
	Total for 2 jobs
	
	X
	
	

	 3R
	Repeat
	High priority
	
	
	
	

	
	
	Normal priority
	
	
	
	

	
	
	Total for 2 jobs
	
	X
	
	

	TEST PHASE B

	Test
	Title
	Number of copies run concurrently
	Elapsed (wall-clock) time to complete specified number of copies
	Number of processor cores and MPI tasks in 1 copy: NCORES/NPROC
	Maximum memory per node
	Total Memory

	1
	MORGANE
	1
	
	
	
	

	1R
	repeat
	1
	
	
	
	

	2
	MORGANE
	8
	
	
	
	

	2R
	repeat
	8
	
	
	
	

	3
	MORGANE memory
	20
	
	
	
	

	4
	SWITCHOVER
	High priority
	
	
	
	

	
	
	Normal priority
	
	
	
	

	
	
	Total for 2 jobs
	
	X
	
	

	4R
	repeat
	High priority
	
	
	
	

	
	
	[bookmark: _GoBack]Normal priority
	
	
	
	

	
	
	 Total for 2 jobs
	
	X
	
	

